P. Giudici, Applied data mining: statistical methods for business and industry. John Wiley & Sons, 2005.
U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, From data mining to knowledge discovery in databases, AI Magazine, vol. 17, no. 3, pp. 37-37, 1996.
J. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann Publishers, 1993.
D. W. Hosmer Jr, S. Lemeshow, and R. X. Sturdivant, Applied logistic regression. John Wiley & Sons, 2013.
J. H. Friedman, The elements of statistical learning: Data mining, inference, and prediction. Springer Open, 2017.
J. Lubsen, J. Pool, and E. Van der Does, A practical device for the application of a diagnostic or prognostic function, Methods of information in medicine, vol. 17, no. 02, pp. 127-129, 1978.
R. S. Michalski and K. A. Kaufman, Learning Patterns in Noisy Data: The AQ Approach, in Machine Learning and Its Applications: Advanced Lectures, G. Paliouras, V. Karkaletsis, and C. D. Spyropoulos Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp. 22-38.
G. Schwarzer, W. Vach, and M. Schumacher, On the misuses of artificial neural networks for prognostic and diagnostic classification in oncology, Statistics in medicine, vol. 19, no. 4, pp. 541-561, 2000.
Clark, D. P.; Schwartz, F. R.; Marin, D.; Ramirez-Giraldo, J. C.; Badea, C. T. (2020). Deep learning based spectral extrapolation for dual-source, dual-energy x-ray computed tomography. Medical Physics, 47(9), 4150-4163. https://doi.org/10.1002/mp.14324
Wang, C.; et al. (2021). Improving Generalizability in Limited-Angle CT Reconstruction with Sinogram Extrapolation. In Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (pp. 86-96). Cham: M. de Bruijne et al. (Eds.). Springer International Publishing.
N. Cristianini and J. Shawe-Taylor, An introduction to support vector machines and other kernel-based learning methods. Cambridge University Press, 2000.
Long, S.; Chen, J.; Hu, A.; Liu, H.; Chen, Z.; Zheng, D. (2020). Microaneurysms Detection in Color Fundus Images based on Naive Bayesian Classification.
Jackins, V.; Vimal, S.; Kaliappan, M.; Lee, M. Y. (2021). AI-based smart prediction of clinical disease using random forest classifier and Naive Bayes. The Journal of Supercomputing, 77(5), 5198-5219. https://doi.org/10.1007/s11227-020-03481-x
Marcot, B. G.; Penman, T. D. (2019). Advances in Bayesian network modelling: Integration of modelling technologies. Environmental Modelling & Software, 111, 386-393.
Marcot, B. G.; Hanea, A. M. (2021). What is an optimal value of k in k-fold cross-validation in discrete Bayesian network analysis? Computational Statistics, 36(3), 2009-2031.
Zhang, X.; Mahadevan, S. (2021). Bayesian network modeling of accident investigation reports for aviation safety assessment. Reliability Engineering & System Safety, 209, 107371.
Yu, J.; et al. (2005). Ovarian cancer identification based on dimensionality reduction for high-throughput mass spectrometry data. Bioinformatics, 21(10), 2200-2209.