Home Electric Power Management Model: Preliminary Proposal

International Journal of Business Society, Vol. 3, Issue 6
Alzaroog Saleh Abdulali Emhmed
Home automationMonitoringProtocolsManagement systems
PDFRegular IssueDOI: 10.30566/ijo-bs/2019
3Volume
6Issue

Abstract

A conceptual approach of a home energy management model is proposed, called GEDE (Home Electric Energy Management), which has as its primary purpose to contribute to home energy efficiency; The model involves communication protocols, infrastructure, and software as a management tool for making energy decisions related to the consumption or generation of electricity by the residential end-user.

References

[1]

Dwyer, J. F., Harness, R. E., Gerber, B. D., Landon, M. A., Petersen, P., Austin, D. D., . . . Eccleston, D. (2016). Power po le density informs spatial prioritization for mitigating avian electrocution. The Journal of Wildlife Management, 80(4), 634 -642. doi:10.1002/jwmg.1048

[2]

Geetha, A., & Subramani, C. (2017). A comprehensive review on energy management strategies of hybrid energy storage system fo r electric vehicles. International Journal of Energy Research, 41(13), 1817 -1834. doi:10.1002/er.3730

[3]

Kagiri, D., & Wainaina, G. (2017). Time and Cost Overruns in Power Projects in Kenya: ACase Study of Kenya Electricity Generating Company Limited. ORSEA JOURNAL, 3(2).

[4]

Kaushal, R. K., Nema, A. K., & Chaudhary, J. (2015). Strategic expl oration of battery waste management: A game- theoretic approach. Waste Manag Res, 33(7), 681 -689. doi:10.1177/0734242X15587932

[5]

Khuntia, S. R., Rueda, J. L., Bouwman, S., & van der Meijden, M. A. M. M. (2016). A literature survey on asset management in electr ical power [transmission and distribution] system. International Transactions on Electrical Energy Systems, 26(10), 2123 -2133. doi:10.1002/etep.2193

[6]

Komiyama, R., & Fujii, Y. (2017). Modeling Analysis of Electric Vehicle Penetration Scenario using Dynamic Optimal Power Generation Mix Model with High Temporal Resolution. Electrical Engineering in Japan, 199(3), 3 -16. doi:10.1002/eej.22942

[7]

Mahmoudi, M. A., Kharazmi, M., Rashidinejad, M., Iranmanesh, M., & Aghaie, P. (2016). The effect of cooling loads manage ment on electric power supply system of Kerman province by the year 2031. Environmental Progress & Sustainable Energy, 35(4), 1177 -1189. doi:10.1002/ep.12302

[8]

Mbarek, B., Meddeb, A., Ben Jaballah, W., & Mosbah, M. (2017). A secure electric energy management in smart home. International Journal of Communication Systems, 30(17), e3347. doi:10.1002/dac.3347

[9]

Özden-Schilling, C. (2016). The infrastructure of markets: From electric power to electronic data. Economic anthropology, 3(1), 68 -80.

[10]

Quaschning, V. (2016). Understanding renewable energy systems: Routledge.

[11]

Rezzak, D., & Boudjerda, N. (2017). Management and control strategy of a hybrid energy source fuel cell/supercapacitor in ele ctric vehicles. International Transactions on Electrical Energy Systems, 27(6), e2308. doi:10.1002/etep.2308

[12]

Sakah, M., Diawuo, F. A., Katzenbach, R., & Gyamfi, S. (2017). Towards a sustainable electrification in Ghana: A review of renewable energy deployment policies. Renewable and Sustainable Energy Reviews, 79, 544 -557. doi: https://doi.org/10.1016/j.rser.2017.05.090

[13]

Shen, J., Jiang, C., Liu, Y., Wang, X., & Qian, J. (2016). Microgrid operation optimization with regulation of grid tie-line power fluctuations and risk management. International Transactions on Electrical Energy Systems, 26(11), 2308 -2321. doi:10.1002/etep.2203

[14]

Tagliaferri, C., Evangelisti, S., Clift, R., Lettieri, P., Chapman, C., & Taylor, R. (2016). Life cycle assessment of convent ional and advanced two -stage energy -from -waste technologies for methane production. Journal of Cleaner Production, 129, 144 -158. doi:https://doi.org/10.1016/j.jclepro.2016.04.092

[15]

Tan, S., Leduc, S., & Kraxner, F. (2015). Renewable Energy Production from Municipal Solid Waste to Mitigate Climate Change: A Spatially Explicit Assessment for Malaysia.

[16]

Twidell, J., & Weir, T. (2015). Renewable energy resources: Routledge.

[17]

Wu, J., Wu, Z ., Wu, F., & Mao, X. (2017). A power balancing method of distributed generation and electric vehicle charging for minimizing operation cost of distribution systems with uncertainties. Energy Science & Engineering, 5(3), 167 -179. doi:10.1002/ese3.157

[18]

Yaqoot, M., Diwan, P., Kandpal, T. C., J. R., & Reviews, S. E. (2016). Review of barriers to the dissemination of decentralized renewable energy systems. Renewable and Sustainable Energy Reviews, 58, 477 -490.

[19]

Zahurul, S., Mariun, N., Grozescu, I., Tsuyoshi, H., Mitani, Y., Othman, M., . . . Abidin, I. ( 2016). Future strategic plan analysis for integrating distributed renewable generation to smart grid through wireless sensor network: Malaysia prospect. Renewable and Sustainable Energy Reviews, 53, 978 -992. doi: https://doi.org/10.1016/j.rser.2017.05.090

[20]

Zhao, Z.-Y., Zuo, J., Wu, P.- H., Yan, H., & Zillante, G. (2016). Competitiveness assessment of the biomass power generation industry in China: A five forces model study. Renewable Energy, 89, 144 -153.

Article Information

Article Details
Volume & IssueVol. 3, Iss. 6
Publication DateDec 12, 2019
Authors
Alzaroog Saleh Abdulali Emhmed
DOI
10.30566/ijo-bs/2019
PDF Download
Home Electric Power Management Model: Preliminary Proposal | International Journal of Business Society